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Zusammenfassung des wissenschaftlichen Inhalts (Hani E. J. Kaba und Simone Scheithauer)

Hintergrund: Antimikrobielle Resistenzen (AMR) stellen eine große Herausforderung für
Gesundheitssysteme weltweit dar. Neben bekannten Faktoren auf denen Interventionen beruhen (z. B.
Antibiotikaeinsatz), könnten bislang unbekannte Einflussfaktoren zur Erklärung beitragen, warum
Interventionen nur mäßig effektiv sind und warum es mit den bisher bekannten Faktoren die
Unterschiede in der AMR Prävalenz (z. B. in Europa) nicht erklärt werden können. MacFadden et al.
(Nat. Clim. Change, 2019) konnten erstmals zeigen, dass die (u. a. klimazonenbedingte) minimale
lokale Temperatur mit der Prävalenz von AMR in den USA assoziiert war. Unsere Ziele waren zu
überprüfen (1) ob diese Assoziation auch trotz unterschiedlicher Gesundheitssysteme (z. B. in Europa)
existiert, (2) ob diese Assoziation auch für eine temporale Dimension (d. h. Klimawandel) vorhanden
ist, und (3) vorherzusagen welche AMR Prävalenzveränderungen anhand von klimatischen
Veränderungen in der Zukunft zu erwarten wären.

Methoden: Wir haben die 6-Jahres-Prävalenz von vier humanmedizinisch hoch relevanten Erreger-
Antibiotika Kombinationen (methicillinresistente Staphylococcus aureus [MRSA], carbapenem-
resistente Klebsiella pneumoniae [CRKP] und Pseudomonas aeruginosa [CRPA] sowie multiresistente
Escherichia coli [MREC]) anhand von nationalen Daten (> 900·103 Isolaten) aus 30 Europäischen
Ländern berechnet und modelliert. Als unabhängige Variablen wurden die saisonale kumulative
Durchschnittstemperatur [wm_temp/ cm_temp] sowie die saisonale Nettoerwärmung
[wm_net_warming/ cm_net_warming] für jedes Land berechnet. Wir haben für potentielle Confounder
kontrolliert, z. B. den Korruptionswahrnehmungsindex [CPI] oder den totalen Antibiotikaverbrauch
[DDD]. Die 30 Länder wurden nach geopolitischer Affiliation (Nordwest- vs. Südost-Gruppe) oder nach
dem Gatekeeping Status im Gesundheitssystem (ja vs. nein) stratifiziert. Die Modellierung wurde
mittels log-linearer Regressionsanalyse durchgeführt.

Ergebnisse: Die (u. a. klimazonenbedingte) Variable [wm_temp] war in der multivariaten Analyse mit
[MRSA], [CRKP] und [MREC] signifikant assoziiert, was die Ergebnisse von MacFadden et al. in einem
anderen Kontinent, gesundheitssystemunabhängig, bestätigen konnte. Somit würde eine Erhöhung
von [wm_temp] um 1 °C in einer 1,02-fachen Erhöhung (p = 0,0002; R2 = 83%) von [MRSA], 1,01-
fachen Erhöhung (p = 0,003; R2 = 75%) von [MREC] und 1,03-fachen Erhöhung (p = 0.011; R2 = 79%)
von [CRKP] resultieren. Zusätzlich wurde die Assoziation der Klimawandel-Variable [wm_net_warming]
für die warme Jahreszeit (Mai – Oktober) mit [CRPA] aufgezeigt. Demnach würde eine Erhöhung von
[wm_net_warming] um 0,5 °C in einer 1,02-fachen Erhöhung (p = 0,035; R2 = 78%) von [CRPA]
resultieren (ceteris paribus). Exponierte Länder (≥ 0,5 °C phasenweise Erhöhung) hatten eine doppelt
so hohe Chance für das Erreichen des Outcomes einer kumulativen jährlichen [CRPA]-Erhöhung von
mindestens 2% (OR = 2,03; CI [1,03 – 3,99]). Stratumsspezifische Analysen zeigten, dass sich speziell
das [MRSA] Modell in der Gruppe ohne Gatekeeping (n = 13) verbessert hat (R2 = 97%), besonders
nach dem Hinzufügen einer Variable welche die durchschnittliche Bettenzahl im stationären Bereich
repräsentiert. Die Anpassungsgüte des [CRPA] Modells war in der Nordwest-Gruppe höher (n = 16; R2

= 71%) im Vergleich zur Südost-Gruppe (n = 14; R2 = 19%). Durch Einbeziehen von projizierten
(erwarteten) Klimadaten, würde [CRPA] in 2039 entsprechend des Modells in 12 der 16 Nordwest
Länder im Vergleich zu 2016 steigen (z. B. 2-fach in Großbritannien und Holland, um ca. 70% in
Dänemark und 50% in Island).

Konklusionen: Diese Arbeit konnte zum ersten Mal einen Hinweis auf eine Assoziation zwischen
Klimawandel und AMR liefern. Während es unbekannt (und eher unwahrscheinlich) ist das solch eine
Assoziation kausal ist, liegt die Wichtigkeit dieser Erkenntnisse darin, dass beide Phänomene
möglicherweise durch die gleichen Faktoren (gesundheits- und umweltpolitische Regularien,
versorgungs- und umweltbezogene Verhaltensweisen) beeinflusst werden. Deren vollständige
Identifikation und Adressierung in Strategiekonzepten könnten effizient (Kosten-Nutzwert) dabei helfen,
das Fortschreiten von Klimawandel und AMR synergistisch zu minimieren.
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A B S T R A C T

The association of antimicrobial resistance (AMR) with climatic factors gained higher attention since resistance
increased with increasing local temperatures in the USA.
We aimed to investigate whether the explanatory strength of climatic factors holds true in a region encom-

passing diverse healthcare systems, like Europe. In particular, we determined whether exposure to temporal
climate warming is associated with an increase in AMR prevalence for clinically relevant pathogens.
A 30-country cross-sectional study was conducted. The six-year prevalence of carbapenem-resistant

Pseudomonas aeruginosa (CRPA), Klebsiella pneumoniae (CRKP), Multiresistant Escherichia coli (MREC), and
Methicillin-resistant Staphylococcus aureus (MRSA) was determined based on > 900 k clinical isolates. Bi- and
multivariate analysis were performed to identify associations with climatic variables using healthcare and socio-
economic confounders.
CRPA was significantly associated with the warm-season change in temperature, which, alongside corruption

perception, explained 78% of total CRPA variance. Accordingly, a 0.5 °C increase of year-wise temperature
change (exposition) resulted in a 1.02-fold increase (p=0.035) in CRPA prevalence (outcome). For a given
country, exposition status doubled the odds of outcome attainment compared to non-exposition (OR=2.03,
95%-CI [1.03–3.99]). Moreover, we found significant associations of CRKP, MREC, and MRSA with the warm-
season mean temperature, which had a higher contribution to MRSA variance explanation than outpatient an-
timicrobial drug use.
We identified a novel association between AMR and climatic factors in Europe, which reveals two aspects:

climatic factors significantly contribute to the explanation of AMR in different types of healthcare systems, while
climate change (i.e. warming) might increase AMR transmission, in particular CRPA.

1. Introduction

Antimicrobial resistance (AMR) is a growing public health threat
worldwide. AMR in bacteria occurs in many ways, including drug ef-
flux, break down and modification of target structures. It can be ac-
quired through mutations or horizontal gene transfer from one or-
ganism to another (Normark and Normark, 2002), which help to
facilitate the spread of AMR in the host and the environment. Conse-
quently, there might be multiple factors associated with the rise of AMR
and this even increases through the variation of AMR patterns across
species and drug classes.
One major factor identified to trigger AMR is the inadequate use of

antimicrobials, including overuse, misuse and substandard use (Llor
and Bjerrum, 2014; Harbarth et al., 2015). In European countries, AMR

significantly correlated with outpatient antibiotic consumption levels,
revealing higher consumption in the South and East of Europe com-
pared to the North and West. Moreover, seasonal fluctuations of anti-
biotic prescription did exist, as prescription peaked in the winter season
in countries with relatively high prescription levels (Goossens et al.,
2005; McDonnell et al., 2017).
In recent years, research suggested that other factors than anti-

microbial use might be involved, leading scientists to adopt an “out-of-
the-box” thinking approach to elucidate such factors (Borg et al., 2012).
Within this context, AMR of several drug-species pairs was found to be
associated with corruption (Collignon et al., 2015), which can be con-
sidered as a cultural determinant of non-compliance to common rules.
This observation was further strengthened by an association of cor-
ruption with antibiotic use (Rönnerstrand and Lapuente, 2017),
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indicating that corruption might confound the influence of anti-
microbial use on AMR. A pan-continental study suggested that differ-
ences in the national economy account for a part of AMR variance, as
AMR increased with increasing poverty (Alvarez-Uria et al., 2016). This
result could not be reproduced for Europe, however (Collignon et al.,
2015).
Cassini et al. showed that the burden due to infections with AMR

bacteria has recently increased in European countries, in particular
carbapenem-resistance. Remarkably, countries around the
Mediterranean Basin, especially Italy and Greece, displayed a higher
burden due to infections with AMR bacteria compared to Northern
European countries (Cassini et al., 2019). Most recently, the role of
climatic factors gained higher attention in AMR variance explanation.
AMR in three bacterial species, Staphylococcus aureus, Escherichia coli
and Klebsiella pneumoniae, was found to increase with increasing local
temperature in the USA (MacFadden et al., 2018). This finding con-
firmed an association between AMR and the climate under the condi-
tions of different climate zones, but (relatively) uniform social, eco-
nomic and healthcare system conditions within a single country. The
intriguing question is whether the AMR-climate association holds true
when confronted with a variety of healthcare systems. Furthermore, it
is of interest to estimate whether climate change would influence AMR
prevalence, which requires additional variables that represent spatial
developments in temperature in addition to local temperature vari-
ables.
As such, our present study aimed at answering the following ques-

tions:

1. Does spatial temperature (climate zone) partly explain AMR var-
iance within diverse healthcare systems (e.g. in Europe)?

2. Does the exposure to temporal temperature warming (climate
change) partly explain AMR variance in Europe? If true, for which
resistance types and for which season(s)?

We investigated the influence of country-specific seasonal tem-
perature as well as the year-wise change of temperature on the ex-
planation of AMR variance, when they are confounded by cultural,
socio-economic and healthcare system variables. We further compared
the explanatory power of these predictors between Northern/Western
(NWC) and Southern/Eastern (SEC) countries.

2. Material and methods

2.1. Study design

We conducted an observational study exploring the relationship
between patterns of national AMR prevalence of four bacterial species
(2011–2016) and recorded seasonal temperatures (1991–2015) in
European countries.

2.2. Country sample

Our study sample comprised 30 countries from the European Union
(EU) or the European Economic Area (EEA) and participating in the
EARS-net surveillance program (European Center for Disease
Prevention and Control (ECDC), 2017). These were Austria, Belgium,
Bulgaria, Croatia, the Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, the Republic of Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Por-
tugal, Romania, the Slovak Republic, Slovenia, Spain, Sweden, the
United Kingdom (all EU and EEA members), in addition to Iceland and
Norway (EEA members). We further divided this sample into two
subgroups, one containing the Northern and Western countries (NWC)
and the other the Southern and Eastern countries (SEC). Details on al-
location criteria are given in the Supplementary Material. The affilia-
tion of individual countries can be taken from Supplementary Table S2

(variable geo_2G) and Fig. 1.

2.3. Dependent variables

In 2017, the WHO published a priority list of antibiotic-resistant
pathogens for which new antibiotics are urgently needed WHO, (2017).
According to this list, bacterial species-drug pairs of the Priority 1
(critical) and Priority 2 (high) categories were selected for analysis in
this study. These were carbapenem-resistant gramnegative bacteria
including Pseudomonas aeruginosa (CRPA) and K. pneumonia (CRKP),
multidrug resistant E. coli (MREC), in addition to methicillin-resistant S.
aureus (MRSA). MREC was selected rather than carbapenem-resistant E.
coli (CREC) due to the relative low diversity of the latter entity. We
calculated the 6-year prevalence of each AMR entity (2011–2016),
which constituted the variables subjected to statistical analysis (see
Supplementary Material for details).

2.4. Predictors and confounders

We used historical monthly mean temperatures (Harris et al., 2014,
Climate Change Knowledge Portal, 2018a and b) and processed this
data as defined in the Supplementary Material part for the warm
(May–October) and cold (January–April, November and December)
seasons. We created two variables, each representing a temperature
change score (1991–2015) for the warm and cold seasons respectively.
Temperature change projections were obtained from the same source.
Equations used for calculation are provided in Table 2.
To control for potential confounders, we selected variables pre-

viously shown to be associated with AMR in Europe, while simulta-
neously known to vary in a similar way, as do AMR variables between
colder (NWC) and warmer (SEC) countries. These variables included
the gross domestic product per capita (GDP, log-transformed) as an
economic indicator (The World Bank, 2018), the Corruption Percep-
tions Index (CPI) as an indicator of non-compliance to common rules
(Transparency International, 2018), and the total antibiotic consump-
tion in the primary care sector (DDD) (ECDC, 2018).
Recent research suggested an association between provider density

and antibiotic prescribing in the USA, in particular in high-income areas
due to competition between providers, including physicians (Klein

Fig. 1. Countries included in the sample (n=30, EARS-net program, ECDC).
Countries shown in black or white were included in the sample. Color code:
white: Northern and Western countries (NWC), black: Southern and Eastern
countries (SEC), grey: not included in the sample.
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et al., 2015). Therefore, we introduced a health system related variable:
density of physicians per population (docs) (Eurostat, 2018b, 2018c) as
an indicator of healthcare human resource.
The variable (no_exp_smok) was the percentage of the population

(%) not exposed to daily passive smoking (Eurostat, 2018a), which we
regarded as compliance to public health measures of anti-indoor
smoking policies. When applicable, data of these variables were col-
lected considering a time lag of 1 year (2010–2015) compared to the
AMR observation period. Table 1 provides further information on
variables used in this study.
After initial analysis considering the variables mentioned above, the

influence of specific health system variables (health spending, acute
care beds and gate-keeping) and environmental (connection to tertiary
waste water treatment plants) on the dependent variables was studied
as indicated in the Supplementary Material (see section Additional
Variables).

2.5. Modeling

We applied log-linear regression for multivariate modeling by
transforming all dependent AMR variables using the natural logarithm
“LN(AMR)” function (see Supplementary Material for further informa-
tion on modeling and regression assumptions assessment).

2.6. Model validation

To investigate the validity of the models, we included four countries
not covered by the EARS-net program in this analysis. These countries
were Belarus, Serbia, Switzerland and Turkey (see Supplementary
Material for details). AMR data on these countries were obtained from
the Central Asian and Eastern European Surveillance of Antimicrobial
Resistance (CAESAR) network (WHO Regional Office for Europe, 2018).
We compared predicted (fitted) and empiric AMR prevalence values for
each model and country. To quantify the deviation of the fitted values,
we calculated the “Index of Estimation Deviation” (IED). The lower the
IED value is, the better the model fitted values for the respective
country as compared to the empirically identified prevalence. This
index was calculated as following: IED=1 – Q, where Q is the quotient
of PRE and AMR with AMR being any of the analyzed 6-year prevalence
values (MRSA, MREC, CRKP or CRPA) and PRE the corresponding un-
standardized estimated value by the respective model (e.g. PRE1.0 for
MRSA, PRE2.0 for MREC, etc.). To neutralized positive and negative
deviations around the empiric AMR value, Q was calculated using the
Microsoft® Excel IF(condition; then; otherwise) function as follows:
Q= IF(PRE < AMR; PRE/AMR; AMR/PRE), therefore resulting in
standardized and intercomparable IED values for all four countries and
resistance types.

Table 1
Description of major variables used for statistical analysis.

Variable Description

MRSA MRSA proportion (%) (Staphylococcus aureus isolates (2011–2016) (ECDC, 2018)
MREC E. coli proportion (%) with combined resistance (3rd generation cephalosporins, fluorquinolones and aminoglycosides) (2011–2016) (ECDC, 2018)
CRKP Klebsiella pneumoniae proportion (%) resistant to carbapenems (2011–2016) (ECDC, 2018)
CRPA Pseudomonas aeruginosa proportion (%) resistant to carbapenems (2011–2016) (ECDC, 2018)
DDD Total antibiotic consumption in defined daily doses per day and 1000 population (primary care sector; mean of 2010–2015) (ECDC, 2018)
docs Physician density (hlth_rs_phys) (Eurostat, 2018b) per 1000 population (demo_pjan) (Eurostat, 2018c), mean of 2010–2015
no_exp_smok People (%) of the population not exposed to daily smoking (2014) (Eurostat file: hlth_ehis_sk4e) (Eurostat, 2018a)
GDP GDP per capita (current US$) 2016, log-scale transformed (The World Bank, 2018)
CPI Corruption Perceptions Index score, sum of points 2012–2015 (Transparency International, 2018)
wm_temp Sum of temperature means [°C] (1991–2015) for the six warmest months (May, June, July, August, September and October) (Harris et al., 2014,

Climate Change Knowledge Portal, 2018a)
cm_temp Sum of temperature means [°C] (1991–2015) for the six coldest months (November, December, January, February, March and April) (Harris et al.,

2014, Climate Change Knowledge Portal, 2018a)
wm_net_warming Net year-wise increase/decrease in mean monthly temperatures [°C] (1991–2015) for May, June, July, August, September and October (Harris et al.,

2014, Climate Change Knowledge Portal, 2018a)
cm_net_warming Net year-wise increase/decrease in mean monthly temperatures [°C] (1991–2015) for November, December, January, February, March and April

(Harris et al., 2014, Climate Change Knowledge Portal, 2018a)
tp_ensemble_rcp8.5 Projected changes in monthly temperature [°C] (2020–2039) for May, June, July, August, September and October, median of 16 climatic and earth

system models under the RCP8.5 scenario (Harris et al., 2014, Climate Change Knowledge Portal, 2018b)
wm_net_warming_ph1-6 Six variables (wm_net_warming_ph1, …, wm_net_warming_ph6) each comprising the sum of 4 year-wise changes in warm months temperature

according to EQ5.0.
warming_0.5 Binary variable, representing a cumulative difference in seasonal temperatures between consecutive 4-year phases (wm_net_warming_ph1-6), either

true (difference≥0.5 °C) or false (difference < 0.5 °C)
CRPAtrend Binary (values true or false) variable, representing the yearly increase of in the cumulative CRPA prevalence compared to the year before, either true

(increase≥ 1.02-fold) or false (increase < 1.02-fold or no increase)
geo_2G Binary variable, representing the geographic allocation of each country into either the “NWC” or the “SEC” groups

Table 2
Equations used to calculate variable values in this work.

No. Equation

EQ1 AMR prevalence= Σ Ri/Σ Bi
EQ2A wm_temp= Σ T̅ [May … October] 1991-2015
EQ2B cm_temp= Σ T̅ [January … April, November, December] 1991-2015
EQ3A wm_net_warming= [Σ (May … October) 1992 – Σ (May … October) 1991] + … + [Σ (May … October) 2015 – Σ (May … October) 2014]
EQ3B cm_net_warming= [Σ (January … April, November, December) 1992 – Σ (January … April, November, December) 1991] + … + [Σ (January … April, November,

December) 2015 – Σ (January … April, November, December) 2014]
EQ4 tp_ensemble_rcp8.5= [Σ̃ Model 1 … Model 16 (May … October)]
EQ5a wm_net_warming_ph1= [Σ (May … October) 1992 – Σ (May … October) 1991] + … + [Σ (May … October) 1995 – Σ (May … October) 1994]

wm_net_warming_ph6= [Σ (May … October) 2012 – Σ (May … October) 2011] + … + [Σ (May … October) 2015 – Σ (May … October) 2014]

a EQ5: only two examples for the calculation on the first and last phases are provided. The other phases were calculated in analogy to these two phases.
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2.7. Supplementary Material

Detailed information on methods, including data collection and
processing and Supplementary Figures/Tables is provided in the
Supplementary Material.

3. Results

We found strong significant correlations of MRSA (methicillin-re-
sistant S. aureus) with wm_temp (warm season mean temperature) and
cm_temp (cold season mean temperature), using the Spearman rank
correlation coefficient (rs). The correlation with wm_net_warming
(warm season net change in temperature) was weaker, although sig-
nificant. MREC (multidrug resistant E. coli) similarly correlated with
wm_temp and wm_net_warming, while showing a stronger association
with CPI (Corruption Perceptions Index). CRKP (carbapenem-resistant
K. pneumoniae) significantly correlated with wm_temp and to a lesser
extent with CPI, wm_net_warming and cm_temp. In contrast, CRPA
(carbapenem-resistant P. aeruginosa) showed a weaker correlation with
wm_temp and stronger correlations with wm_net_warming, CPI and
GDP (gross domestic product). No significant bivariate associations
were found for any AMR variable with docs (physician density) (Tables
3A and 3B).
Multivariate analysis (Table 4) identified wm_temp as a significant

predictor of MRSA, MREC and CRKP, but not CRPA. A cumulative in-
crease of mean temperature of 1 °C between May and October would
result in an increase of 1.02 (p= 0·0002), 1.01 (p= 0.003) and 1.03-
fold (p=0.011) in MRSA (Model M1.0), MREC (Model M 2.0) and
CRKP (Model M 3.0) respectively (ceteris paribus). In contrast, cm_temp
was not a significant predictor of any AMR variable. When the pair of
wm_net_warming and cm_net_warming was added to regression, M1.0,
M2.0 and M3.0 did not change. Consequently, neither warming vari-
able had a significant contribution to variance explanation of the re-
spective AMR variable.
Interestingly, wm_net_warming was retained by the log_CRPA model

(M4.0) as a significant predictor together with CPI. Accordingly, an
increase in the cumulative year-wise augmentation of seasonal tem-
perature (wm_net_warming) by 0.5 °C leads to a 1.02-fold increase
(p=0.035) in CRPA prevalence (when CPI is kept constant).
We analyzed model M4.0 for each country group, NWC and SEC,

separately with CPI and wm_net_warming as fixed predictors. Both
variables had significant regression coefficients (p=0.0002 and 0.03
respectively, adj.-R2= 71%) in NWC in contrast to SEC (p= 0.3 and
0.4 respectively, adj.-R2= 19%). This result indicates that M4.0 fitted
the values better in NWC than in SEC and thus explained a higher
proportion of CRPA variance in NWC compared to SEC.
As CRPA was the only variable that was significantly explained by

wm_net_warming, we further validated this result using a different
approach. We determined whether countries experiencing a warming of
≥0.5 °C (exposition) displayed higher odds for increase in CRPA pre-
valence (cut-off 1.02-fold increase; outcome) in the following years. At

this stage of analysis, the time interval that is sufficient for outcome
attainment cannot be accurately defined. Therefore, we paired the year-
wise change in cumulative CRPA prevalence (binary outcome variable
CRPAtrend) with the phase-wise change in seasonal temperature, where
each phase corresponds to four years (binary exposition variable
warming_0.5; see Supplementary Material for details on calculation),
resulting in five binary values for each variable and country (n=150
pairs in total). We found that exposed countries displayed a 2-fold
higher odds of outcome attainment compared to unexposed countries
(OR=2.03, 95%-CI [1.03–3.99]). This result strengthens the associa-
tion revealed through M4.0.
Next, we validated all four models by using them to estimate fitted

values for the AMR variables in countries not present in the EU/EEA
sample (Belarus, Serbia, Switzerland and Turkey), by calculating the
Index of Estimation Deviation (IED, Table 5).
M1.0 could only estimate the MRSA prevalence in Switzerland and

Turkey. We obtained a wrong estimation for Turkey, as the fitted value
exceeded 100% (Supplementary Table S13). M2.0 estimated MREC in
Switzerland at best. In contrast, the best estimation obtained by M3.0
was for Turkey; however, the 95%-CI of the estimation was broad and
exceeded 100% (Supplementary Table S15). M4.0 underestimated
CRPA prevalence in Belarus (Supplementary Table S16), but estimated
all other three countries with a comparably higher accuracy (Table 5).
Finally, we aimed to estimate the effect of temperature change on

future CRPA prevalence as calculated by M4.0. First, we calculated the
expected change in warm season temperature by the end of 2039
(variable tp_ensemble_rcp8.5) and determined its relationship with
wm_net_warming. The two variables showed a positive correlation
(rs= 0.74, p≤0.0001), indicating that the majority of countries with a
higher ranking in terms of historical increase in seasonal temperature
are expected to rank higher in relation to future seasonal temperature
increases. Additionally, tp_ensemble_rcp8.5 positively correlated with
CRPA (rs= 0.73, p≤ 0.0001). Furthermore, NWC displayed a higher
expected difference (variable Δ_warming_16_39) between historical and
expected temperature in average, as compared to SEC (Supplementary
Table S17).
Since M4.0 explained CRPA variance in a better way in NWC than in

SEC, we calculated the expected CRPA prevalence by 2039 in these
countries (assuming constant CPI values) by entering the values of
tp_ensemble_rcp8.5 into wm_net_warming, although these two variables
are not fully identical. According to the estimation (variable
CRPA_est2039), most NWC are expected to observe an increased CRPA
prevalence by 2039 because of the expected change in warming alone.
For example, CRPA prevalence is expected to double in the UK and the
Netherlands and to increase by ca. 70% in Denmark and 50% in Iceland
(Fig. 2), although it remains low (≤10%) in those countries compared
to currently observed prevalence in SEC.
Finally, we pondered whether distinct variables not retained by the

models (e. g. docs, or GDP) were insufficient to represent the respective
indicator, potentially leading to underfitting of values. We therefore
subjected the obtained models to further analysis by adding additional,
more health and eco-system specific variables.
These additional variables were health spending (hsp), acute care

beds (ac_beds) and people connected to tertiary waste water treatment
plants (ter_WWT). We added these variables into linear regression, yet
none had a significant contribution to variance explanation of any of
the analyzed AMR variables herein (Supplementary Table S18).
Next, we considered whether contrasting prescribing behavior, in-

dependent of physician density, is present between countries with a
gate-keeping role of general practitioners (GPs) and those without gate-
keeping. We particularly asked whether the total antimicrobial con-
sume and AMR prevalence significantly differed between these two
country groups. As a control we investigated the same phenomenon
between NWC and SEC, expecting significant differences since north-to-
south and west-to-east gradients in Europe are known to exist
(European Center for Disease Prevention and Control, 2017).

Table 3a
Bivariate analysis. Association of antimicrobial resistance (AMR) with potential
confounder variables using the Spearman correlation coefficient rs in 30
countries. Statistical significance was assumed when p < 0.05 (95% level).

AMR variable DDD docs no_exp_smok GDP CPI

MRSA rs 0.715 −0.088 −0.483 −0.531 −0.699
p 0.000 0.643 0.007 0.003 0.000

CRPA rs 0.391 −0.061 −0.584 −0.841 −0.865
p 0.033 0.750 0.001 0.000 0.000

CRKP rs 0.617 0.026 −0.556 −0.543 −0.726
p 0.000 0.894 0.002 0.002 0.000

MREC rs 0.442 −0.102 −0.536 −0.698 −0.822
p 0.015 0.593 0.002 0.000 0.000
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After applying the Mann-Whitney (MW)-Test, no significant differ-
ences, neither in DDD nor in any AMR variable were found between the
two gate-keeping (Yes; No) groups however. This result indicates that
the values of these variables were on average similar independent of the
gate-keeping status. In contrast, significant differences for all tested
variables (DDD, MRSA, MREC, CRKP and CRPA) were found between
NWC and SEC (Supplementary Tables S19a and b) as previously as-
sumed.
Gate-keeping not only influences prescription behavior, it has also

impacts on patient choice and access to care, including acute care
(Reibling and Wendt, 2012). Thus, we expected a higher average
number of acute care beds in the No-group compared to the Yes-group,
taking into account that additional factors also influence this number.
Indeed, countries without gate-keeping displayed a higher median

of ac_beds than countries with gate-keeping (409 vs. 329 per 100,000
population). However this difference was not significant (MW-test:
U= 76, p=0.145).
To determine whether ac_beds eventually contributes to AMR var-

iance explanation within countries with or without gate-keeping, we re-
ran linear regression in each gate-keeping group separately, using fixed
predictors as obtained by models M1.0, M2.0, M3.0 and M4.0, with
ac_beds forced into each model.
In the Yes-group, ac_beds had no significant contribution to variance

explanation of any AMR variable. Furthermore, the introduction of
ac_beds into each model rendered some regression-coefficients that
have been previously significant, not significant anymore
(Supplementary Table S20a). Similarly, ac_beds had no significant
contribution to variance explanation of log_MREC, log_CRKP and
log_CRPA in the No-group (Supplementary Table S20b). Interestingly,
bac_beds was significant when ac_beds was introduced into M1.0, with all
other regression coefficients of fixed predictors remaining significant
(Supplementary Table S20a and Table 4). Strikingly, the adj. R2 of this
Model (M1.5) was 97.4% with fitted values very close to the empirical
MRSA prevalence. Removal of ac_beds from the model reduced adj. R2

to 77.5%, indicating that ac_beds improved the previous model by ca.
20%. However, not all assumptions for linear regression were met

probably due to the small sample size of this subgroup (n=13) (See
Supplementary Material for detailed information).

4. Discussion

The present study contributes novel results to the debate about AMR
and climate factors, suggesting an association between temporal cli-
matic developments and carbapenem-resistance in P. aeruginosa in
Europe. Furthermore, the exposition to temporal warming in seasonal
temperature was associated with an increase in CRPA year-wise pre-
valence.
This association is the major finding of the present study and to our

best knowledge is shown here for the first time.
Our results suggest an influence of spatial temperature variability in

Europe, which partly explains AMR variance in three bacterial species,
including carbapenem-resistance (K. pneumoniae), methicillin-re-
sistance (S. aureus) and multidrug resistance (E. coli). This is in line with
recent results from another region, showing an association between
minimum local temperatures and AMR in the same three species in the

Table 3b
Bivariate analysis. Association of antimicrobial resistance (AMR) with climatic variables using the Spearman correlation coefficient rs in 30 countries. Statistical
significance was assumed when p < 0.05 (95% level).

AMR variable wm_temp cm_temp wm_ net_warming cm_ net_warming tp_ensemble_ rcp8.5

MRSA rs 0.826 0.691 0.542 −0.067 0.435
p 0.000 0.000 0.002 0.724 0.016

CRPA rs 0.671 0.224 0.748 0.247 0.727
p 0.000 0.233 0.000 0.187 0.000

CRKP rs 0.798 0.543 0.546 −0.074 0.469
p 0.000 0.002 0.002 0.704 0.010

MREC rs 0.718 0.446 0.617 0.115 0.540
p 0.000 0.014 0.000 0.545 0.002

Table 4
Summary of the multivariate models obtained in this study. Adj.-R2: adjusted coefficient of determination, ß0: intercept, b: regression coefficient, ß: standardized
regression coefficient. Only variables with significant regression coefficients were retained by the respective model through step-wise selection.

Model adj.-R2 Dependent variable ß0 DDD no_exp_ smok CPI wm_ temp wm_net_ warming ac_beds

M1.0 83% log_MRSA b −4.788 0.068 2.501 −0.011 0.022 – –
ß 0.347 0.261 −0.542 0.444

M2.0 75% log_MREC b −2.232 – – −0.007 0.011 – –
ß −0.598 0.377

M3.0 79% log_CRKP b −6.213 0.106 – −0.012 0.025 – –
ß 0.376 −0.409 0.321

M4.0 78% log_CRPA b 0.007 – – −0.008 – 0.039 –
ß −0.693 0.263

M1.5a 97% log_MRSA b −6.505 0.066 2.424 −0.009 0.020 – 0.004
ß 0.430 0.309 −0.478 0.474 0.416

a M1.5 valid only for countries without full gate-keeping role for general practitioners (n= 13/30).

Table 5
Assessment of estimation deviation. Model estimations in four countries (not
present in the EU/EEA sample) were compared to empirical data determined
through the CAESAR project (WHO Regional Office for Europe, 2018). The
values represent the Index of Estimation Deviation (IED; see Supplementary
Material for calculation). IED range [0–1]. The higher the IED the higher is the
deviation.

Country IED

M1.0
(MRSA)

M2.0
(MREC)

M3.0
(CRKP)

M4.0
(CRPA)

M1.5
(MRSA)

Belarus – 0.61 0.93 0.45 –
Serbia – 0.35 0.76 0.01 –
Switzerland 0.66 0.23 0.94 0.20 0.67
Turkey 0.83 0.37 0.21 0.11 0.63
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USA (MacFadden et al., 2018). This phenomenon might thus be of
global validity and not restricted to a single continent.
We selected different confounders of AMR by using a health system

related variable and socio-economic indicators, given the higher di-
versity of these factors in a multi-country European landscape com-
pared to the USA as a single country. In accordance with Collignon et al.
(2015), we identified corruption perception (CPI) as a major predictor
that is negatively associated with AMR. Furthermore, its contribution to
variance explanation was always higher than that of antimicrobial
consumption in the outpatient sector (DDD). CPI can be regarded as an
indicator of compliance to common rules and guidelines. Projected on
the healthcare system, this concerns for instance infection control
practices in hospitals or prescription practices, most notably in the
outpatient sector.
The national economy, represented by GDP, had no major influence

on any AMR variable, again confirming previous observations
(Collignon et al., 2015). GDP is a significant explanatory factor of AMR
variance at a global level, for instance, when comparing countries from
different continents (Alvarez-Uria et al., 2016) but it does not hold true
within Europe.
Physician density was not related to any AMR variable under the

selected test conditions. This could be due to the aggregated nature of
data, however. An association might still occur at the sub-regional
level, where an interaction with antimicrobial consumption might exist.
Interestingly, the density of acute care beds significantly con-

tributed to variance explanation of MRSA, although only in the sub-
group of countries without gate-keeping system. Gate-keeping is a
regulatory element to control patient choice of consuming healthcare
goods and services. Thus, it affects access to specialized and/or sec-
ondary care facilities, but might also impact physicians’ behavior, i. e.

in terms of prescription.
Our results suggest no significant differences in total antimicrobial

use between countries with or without a gate-keeping system, yet there
are some remaining queries.
Increased access to secondary care facilities would result in an in-

creased risk of transmission per se. This would partly explain why only
log_MRSA prevalence was associated with ac_beds in contrast to the
other AMR variables, since S. aureus (and therefore MRSA) is a common
colonizer of the skin flora, which increases the risk of transmission.
However, ac_beds encodes only for the density of hospital beds, that

means independent from whether they are occupied or not. It is rather
the occupancy rate of hospital beds that was found to be associated with
hospital acquired infections, most notably MRSA infection/colonization
(Kaier et al., 2012), something which limits the previous assumption.
We should also note that transmission risk depends on the type of pa-
tient groups admitted, but the distribution of this variable within the
analyzed group of countries is unknown.
Although these results confirm previous findings and since tem-

perature is known to facilitate both in vitro bacterial growth and hor-
izontal gene transfer (Lorenz and Wackernagel, 1994), they do not
mandatorily mean the presence of a causal association between en-
vironmental temperatures and AMR. These findings rather indicate a
kind of geographic and therefore climate zone “pre-disposition” that
seems to influence AMR. A similar indication was recently found, where
the distance to the equator was associated with a lower risk of AMR in
Acinetobacter spp. (Alvarez-Uria and Midde, 2018).
The reason of such associations is still unknown. If a causal re-

lationship indeed exists, a potential explanation could be that warmer
climates might influence concentrations of heavy metals or biocides in
soil or water or their uptake by different organisms, including bacteria

Fig. 2. CRPA prevalence by 2039 (light bars) as estimated by M4.0 (with constant CPI) and tp_ensemble_rcp8.5 (ensemble of 16 climatic models) for NWC. Empirical
prevalence by 2016 (dark bars) is given for comparison. The fold change in estimated CRPA is given between brackets.
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(Marques et al., 2010). These potentially toxic substances are at the
same time known to trigger AMR through co- or cross-selection (Singer
et al., 2016). This could partly explain why the association with AMR
was exclusively found during the European warm season. However, the
relationship could be non-causal, as both variables are associated with
common confounders, such as CPI. Furthermore, MRSA was also sig-
nificantly, although weakly, associated with no_exp_smok, further in-
dicating a role of community related behavioral practices (i.e. com-
pliance to non-indoor smoking rules) with the spread of MRSA. Again,
such behaviors could be related to hand hygiene practices of healthcare
personnel or antimicrobial prescribing habits of providers. What
strengthens this assumption is the reported association of MRSA with
cultural determinants in Europe (Borg et al., 2012).
No evidence of an association between warming (i.e. temporal in-

crease in temperatures) and AMR in the three species mentioned above
could be drawn from our findings.
In contrast, an association between seasonal warming, and carba-

penem-resistance in P. aeruginosa was present. CRPA prevalence was
higher in those countries that have experienced higher increases in
seasonal temperatures over the recent years. This was true for the warm
season (May–October), but not for the cold season (November–April).
Furthermore, an increase of 0.5 °C in the mean seasonal temperature
over a phase of 4 years was associated with 2-fold higher odds of year-
wise increase in cumulative CRPA prevalence. These results link the
recent climate developments to the spread of AMR, in particular car-
bapenem-resistance in P. aeruginosa.
The intriguing question is why such association was found only for

CRPA and not for other AMR variables investigated in this study. There
is no final answer, yet one possible explanation may emerge if two
phenomena are combined. Associations between elevated outdoor
temperatures during the warm season and infections have been re-
ported for P. aeruginosa (Psoter et al., 2013). Therefore, an increase of P.
aeruginosa infections can be expected with rising temperatures. Since
carbapenems are so-called reserve antibiotics, the increase in P. aeru-
ginosa infections could have triggered the use of carbapenems. Since P.
aeruginosa is a bacterium known to quickly react to selective pressure
resulting from the application of antibiotics (Lister et al., 2009), this
could have facilitated the rise in CRPA proportions of P. aeruginosa
isolates due to selection mechanisms. Another possible explanation may
be related to the usual habitats of this ubiquitous bacterium as P. aer-
uginosa is frequently found in water (Mena and Gerba, 2009). As
mentioned above, environmental warming might influence concentra-
tions of toxic substances in the waters and, therefore, induce AMR by
co-resistance mechanisms. However, a causal relationship might not
exist at all, and both AMR and climate change may be influenced by a
common strong confounder.
The variable wm_net_warming significantly explained a part of

CRPA variance, yet its explanatory power diminished when the re-
gression was exclusively performed within SEC, in contrast to NWC.
This explains the higher deviation in estimations for SEC compared to
their NWC counterparts. Because M4.0 estimations for distinct adjacent
SEC (e.g. Croatia, Slovenia and Serbia) were surprisingly accurate,
distinct geographical regions might exist where M4.0 is an accurate
estimator and others where it is not (e.g. Poland, Czech and Slovak
Republic or Greece, Romania and Bulgaria; see Supplementary Table
S16). The conclusion is that other factors, not identified through this
study, exist in such sub-regions (largely SEC) that have a stronger in-
fluence on CRPA than wm_net_warming, something that might also be
true for MRSA and CRKP with wm_temp.
Our study has a number of strengths, including the combination of

various indicators in the analysis, the reproduction of previous results
using different datasets and models as well as the validation of obtained
models by estimating AMR variance values outside the country sample
by the obtained models.
We consider the reproduction of previously known associations by

using different modeling methods as well as different datasets as a

requirement when performing modeling. By this, we confirmed pre-
vious findings on one hand and strengthened the validity of additional
results obtained by our methodological approach in this study, on the
other.
However, a number of limitations must be considered. First, the

analysis was not based on a random sample. However, as the selection
of countries under observation was restricted by data availability, there
was no alternative than selecting all European countries for which co-
herent data was available.
Another limitation of our study was that bacterial isolates were

restricted to invasive bloodstream infections and cerebrospinal fluid
samples and do not contain, for example, samples of urinary tract, su-
perficial skin infections or bacterial colonization of mucosal surfaces.
Furthermore, the number of reporting laboratories from each country is
variable, potentially leading to some bias in the data source. We utilized
the currently best available data source (EARS-net data). Additionally,
data on antibiotic consumption in humans were not coherent, with
some countries reporting total healthcare data including the hospital
sector, while the majority reported data of the primary care sector only.
However, the risk of overestimating primary care consumption in those
countries should be low, as primary care antibiotic consumption on
average accounts for 90% of the total consumption (McDonnell et al.,
2017).
The use of a carbapenem specific (J01DH) consumption variable

might have been more accurate to estimate carbapenem-resistance in
ecological studies rather than a universal antibiotic (J01) consumption
variable. Including J01DH was not possible due to a high missing
proportion in the country sample.
Furthermore, only aggregated (national) data were available, which

have prevented the use of different regression methods and forced the
application of mathematical transformations. This is while neither cli-
mate, nor AMR or use of antibiotics is national. This could have biased
the data in some way.
Finally, while we used a complex selection of various indicators,

some important factors were missing from the analysis. Most notably
antibiotic use in the animal sector, due to missing and inconsistent
country data for the observation period. The inclusion of other factors
might have added explanatory value to the models or on the other
hand, altered their composition.

5. Conclusions

The present study provides the first evidence on the association
between increased temperatures and AMR in invasive bacterial isolates
in Europe. Our data highlight future increases in carbapenem-resistant
P. aeruginosa (CRPA) under exposure to a warming climate. In parti-
cular, the CRPA prevalence might double by 2039 in some NWC, which
are likely to experience stronger climate change. We further re-
commend the use of socio-economic variables other than GDP (e.g. CPI)
in AMR modeling of European countries.
While these results remain hypothetical, we believe that further

research is necessary to better understand the nature of the association
between AMR and climate change. Our findings suggest to consider
regional level variations, cross-border patterns and multi-factor effects
to build new knowledge on the potential effects of temperature change
on bacterial resistance mechanisms, which may inform future policy
strategies in Europe.
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