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Zusammenfassung des wissenschaftlichen Inhalts

(Sebastian Rosenzweig)

Die Magnetresonanztomographie (MRT) ist aufgrund ihrer vielfältigen Einsatzmöglichkeiten und
ihrer einzigartigen Kontrasteigenschaften aus dem klinischen Alltag der Herzdiagnostik nicht mehr
wegzudenken.  Trotzdem ist  sie  noch immer eine zeitaufwendige Bildgebungstechnik und daher
fehleranfällig und nicht sonderlich patientenfreundlich. Mit neuen Echtzeit-Bildgebungsverfahren
können zwar einige dieser Probleme umgangen werden, allerdings sind diese Methoden bisher auf
einzelne,  zweidimensionale Schichten beschränkt.  Für eine klinische relevante Untersuchung des
Herzens ist jedoch zeitaufgelöste, dreidimensionale Information über das Herz notwendig. 
In  unserer  Arbeit  entwickeln  wir  eine  Technik,  die  es  erlaubt  nicht  nur  eine  sondern  mehrere
Schichten des Herzens mit einer Zeitauflösung von 30 Bildern pro Herzschlag aufzunehmen. Wir
realisieren dies durch die Kombination eines Einzelschicht-Echtzeitverfahrens mit der Simultaneous
Multi-Slice  Technik.  Das  Einzelschicht-Echtzeitverfahren  verbindet  nicht-Kartesische
Datenakquisition mit einer iterativen nichtlinearen Rekonstruktion. Dies ermöglicht auch bei kurzer
Untersuchungsdauer eine  sehr gute Bildqualität mit hoher Zeitauflösung. Bei der Simultaneous
Multi-Slice  Technik  werden  mehrere  Schichten  gleichzeitig  aufgenommen  und  durch  spezielle
Encodier- und Seperationstechniken während der Rekonstruktion wieder getrennt. Dadurch wird
dreidimensionale Information ohne nennenswerten Zeitverlust generiert. 
Wir demonstrieren die grundsätzliche Funktionalität unseres Verfahrens  an Phantommessungen,
vergleichen  verschiedene  Datenakquisitionsstrategien  und  testen  die  Methode  in-vivo  am
menschlichen Gehirn und Herzen. 

Universitätsmedizin Göttingen 
Institut für Diagnostische und Interventionelle Radiologie
Name, Telefon: 0551/3920873
Lehrstuhl: Prof. Martin Uecker
Sebastian Rosenzweig
Robert-Koch-Str. 40,
37075 Göttingen
sebastian.rosenzweig@med.uni-goettingen.de



Simultaneous Multi-Slice MRI using Cartesian

and Radial FLASH and Regularized Nonlinear

Inversion: SMS-NLINV

Sebastian Rosenzweig1, H. Christian M. Holme1,2, Robin N.
Wilke1,2, Dirk Voit3, Jens Frahm2,3 and Martin Uecker1,2

1Institute for Diagnostic and Interventional Radiology,
University Medical Center Göttingen, Göttingen, Germany.

2German Centre for Cardiovascular Research (DZHK),
Partner site Göttingen, Göttingen, Germany.

3Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut
für biophysikalische Chemie, Göttingen, Germany.

August 4, 2017

Running head: SMS Reconstruction Using Nonlinear Inversion
Address correspondence to:
Sebastian Rosenzweig
University Medical Center Göttingen
Institute for Diagnostic and Interventional Radiology
Robert-Koch-Str. 40
37075 Göttingen, Germany
sebastian.rosenzweig@med.uni-goettingen.de

Approximate word count: 153 (Abstract) 3470 (body)

Submitted to Magnetic Resonance in Medicine as a Full Paper.

Part of this work has been presented at the ISMRM Annual Conference 2016
(Singapore) and 2017 (Honolulu). This work was supported by a seed grant of
the Physics-to-Medicine Initiative Göttingen (LM der Niedersächsischen Vorab).
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Abstract

Purpose: The development of a calibrationless parallel imaging method for
accelerated simultaneous multi-slice (SMS) MRI based on Regularized Nonlinear
Inversion (NLINV), evaluated using Cartesian and radial FLASH.
Theory and Methods: NLINV is a parallel imaging method that jointly
estimates image content and coil sensitivities using a Newton-type method with
regularization. Here, NLINV is extended to SMS-NLINV for reconstruction
and separation of all simultaneously acquired slices. The performance of the
extended method is evaluated for different sampling schemes using phantom
and in-vivo experiments based on Cartesian and radial SMS-FLASH sequences.
Results: The basic algorithm was validated in Cartesian experiments by com-
parison with ESPIRiT. For Cartesian and radial sampling, improved results are
demonstrated compared to single-slice experiments, and it is further shown that
sampling schemes using complementary samples outperform schemes with the
same samples in each partition.
Conclusion: The extension of the NLINV algorithm for SMS data was im-
plemented and successfully demonstrated in combination with a Cartesian and
radial SMS-FLASH sequence.

Key words: simultaneous multi-slice, SMS, multi-band, regularized
nonlinear inversion, NLINV, parallel imaging
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Introduction

Accelerating image acquisition is of great importance in clinical magnetic res-
onance imaging (MRI). Parallel imaging exploits receive-coil arrays for accel-
eration. Conventional reconstruction methods for parallel imaging consist of a
calibration from reference lines followed by linear reconstruction [1, 2, 3, 4]. In
contrast, Regularized Nonlinear Inversion (NLINV) [5] does not require a cal-
ibration step but simultaneously computes image content and coil sensitivities
from all available data. Because NLINV does not depend on the presence of ex-
plicit (Cartesian) calibration data, it is ideally suited for non-Cartesian parallel
imaging. For example, NLINV is used in a highly accelerated real-time MRI
method based on radial sampling [6].

Many applications require the acquisition of several slices. Simultaneous
multi-slice (SMS) MRI [7] allows for significant scan time reductions and im-
proved image quality [8, 9]. In SMS MRI several slices are excited at the
same time and the resulting superposition is disentangled using special encoding
schemes [10, 11] and/or the spatial encoding information inherent in receiver coil
arrays [7]. The main benefit of accelerated SMS MRI over conventional single-
slice imaging is the possibility to distribute undersampling among an additional
dimension and exploit sensitivity encoding in all three dimensions which allows
for higher acceleration factors [12, 13, 14, 15, 16, 17].

The aim of this work is to extend NLINV for the reconstruction of SMS data.
First, the extension of the algorithm for Cartesian and radial sampling with
arbitray encoding in slice direction is introduced. For Cartesian data from an
SMS-FLASH sequence, SMS-NLINV is compared to ESPIRiT [4]. For Cartesian
and radial data, a single-slice measurement is compared to SMS acquisitions
with equivalent or complementary samples in each partition. Accelerated SMS
measurements of a human brain and a human heart are performed to show
feasibility of in vivo scans.

Theory

Table 1 shows the notation used in this work.

SMS Encoding and Excitation Pulses

In SMS MRI, M partitions p = 1, . . . ,M are measured to get information about
M parallel slices q = 1, . . . ,M . Please note that a fully sampled acquisition with
M partitions has M times the number of samples compared to a single-slice ex-
periment, and the acceleration factor of an SMS experiment is then given by
R = N full/N red, with N full/red the number of samples acquired in a full and
undersampled partition measurement, respectively. Contrary to conventional
multi-slice, in each partition measurement all M slices are excited simultane-
ously, i.e. superposed data are acquired. In the limit of small flip angles, an
SMS radio frequency (RF) excitation pulse which excites M slices at positions
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zq and thickness ∆zq can be created by superposing conventional single-slice

excitation pulses B
(1)
rf (zq,∆zq). To generate differently encoded partitions a

unitary M ×M encoding matrix Ξ is included. The SMS RF excitation pulse
for partition measurement p is then given by

B̃
(M)
rf,p (z1, . . . , zM ,∆z1, . . . ,∆zM ) :=

M∑
q=1

ΞpqB
(1)
rf (zq,∆zq). (1)

Let yq := (y1
q , . . . , y

N
q ) be a vector which contains the k-spaces yjq of slice q and

coils j = 1, . . . , N . Then, the encoded k-space of partition p is given by

ỹp :=

M∑
q=1

Ξpqyq. (2)

Although the derived SMS-NLINV algorithm is completely generic, we use the
discrete Fourier-matrix for encoding in the scope of this work, i.e.

Ξpq = exp

(
−2πi

(p− 1)(q − 1)

M

)
, p, q = 1, . . . ,M. (3)

Image reconstruction

If the encoded k-spaces ỹ1, . . . , ỹM determined by the M partition measure-
ments are fully sampled, the k-space of each slice can be recovered by applying
the inverse of the encoding matrix

yavg
q :=

M∑
p=1

Ξ−1
qp ỹp. (4)

Note that the k-spaces yavg
q possess an SNR benefit of

√
M compared to single-

slice experiments due to averaging given by Eq. (4) and because Ξ is unitary. Eq.
(4) can also be applied to undersampled data if the same k-space positions are
acquired for all partitions. The recovered (but still undersampled) k-spaces yavg

q

can then be processed using conventional single-slice reconstruction algorithms.
This still leads to an SNR benefit, but the actual advantage of SMS - the
acceleration in direction perpendicular to the slices - only comes into play when
distinct samples are acquired for each partition. Then, Eq. (4) is no longer
applicable and more elaborate SMS reconstruction approaches must be applied.
A novel approach to tackle this reconstruction problem is introduced in the
following.

Regularized Nonlinear Inversion (NLINV) [5] can be extended for the re-
construction of encoded SMS data [18]. In NLINV, the MRI signal equation is
modeled as a nonlinear operator equation,

F (X) = Ỹ . (5)
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X is the vector to be reconstructed. It contains the image content mq(r) and
the N coil sensitivities cjq(r), j = 1, . . . , N , for each of the M slices q, i.e. the

stacked vector X := (x1, . . . ,xM )
T

as a concatenation of the vectors xq :=(
mq, c

1
q . . . , c

N
q

)T
. The vector Ỹ contains the encoded k-spaces for all M par-

titions and all N channels, i.e. Ỹ := (ỹ1, . . . , ỹM )
T

with ỹp :=
(
ỹ1
p, . . . , ỹ

N
p ,
)T

.
Then, the nonlinear mapping function F is given by

F : X 7→ PΞ

 F(m1c1)
...

F(mMcM )

 , F(mqcq) :=

 F(mqc
1
q)

...
F(mqc

N
q )

 . (6)

Here, F is the (two-dimensional) Fourier transform and Ξ is an encoding matrix,
e.g. Eq. (3). The projection matrix P is defined by

P :=

 P1 0
. . .

0 PM

 , (7)

where Pp is the orthogonal projection onto the k-space trajectory used for par-
tition p = 1, . . . ,M . A more compact notation for Eq. (6) can be given by
introducing the operator C, which performs the multiplication of the object
with the sensitivities:

F : X 7→ PΞFCX. (8)

The forward operator F weights the magnetization mq of slice q with the coil
sensitivities cq = (c1q, . . . , c

N
q )T (C), transforms into k-space (F), encodes (Ξ)

and samples (P ). The derivative DF and its adjoint DFH will be used later
to solve the inverse problem Eq. (5) and are given in the Appendix. Figure 1
shows a flow chart of the operators F , DF and DFH .

Eq. (5) is highly underdetermined, hence prior knowledge has to be incor-
porated to prevent image content to be assigned to coil profiles and vice versa.
While the image content can contain strong variations and edges, coil profiles in
general are smooth functions, so a smoothness-demanding norm can be applied.
Uecker et al. suggest a Sobolev norm

||f ||Hl := ||a(I − b∆)l/2f ||L2 , (9)

with l a positive integer, I the identity matrix, a and b scaling parameters and
∆ = ∂2

x + ∂2
y the 2D Laplacian. Hence, in Fourier space the standard L2-norm

has to be weighted by the additional term a(1 + b||k||2)l/2, which penalizes high
spatial frequencies. This regularization is implemented by transforming X =
(x1, . . . ,xM )T using a weighting matrix W−1. We denote X ′ := W−1X and

x′q := W−1xq =
(
mq, c

′1
q, . . . , c

′N
q ,
)T

. This yields a transformed but equivalent

system of equations
G(X ′) := FWX ′ = Ỹ , (10)
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which is solved using the Iteratively Regularized Gauss Newton Method (IRGNM).
As a first step, the IRGNM linearizes Eq. (10),

Ỹ = DG
∣∣
X′

n
dX ′ +GX ′n, (11)

where X ′n is the estimate of the nth Newton step and DG
∣∣
X′

n
is the Jacobian of G

at X ′n. This equation is solved in the least-squares sense and with regularization
using the Conjugate Gradient algorithm. The corresponding cost function to
be minimized in every Newton step is

Φ(dX ′) = argmin
dX′

(
||DG

∣∣
X′

n
dX ′ − (Ỹ −GX ′n)||2L2 + βn||X ′n + dX ′||2L2

)
, (12)

where the L2 penalty term βn||X ′n + dX ′||2L2 = βn||W−1Xn+1||2L2 , with βn =
β0h

n and h ∈ (0, 1), implies Tikhonov regularization.

Implementation for Cartesian and non-Cartesian Data

We assume Eq. (5) to be given in discretized form and all functions are repre-
sented by vectors of point values on a rectangular grid. For Cartesian sampling,
F can be implemented exactly as a discrete Fourier transform, and Pp is a diag-
onal matrix with ones at sample positions and zeros elsewhere. The 2D Fourier
transform F always appears in combination with the encoding matrix Ξ, which
in this work is the discrete Fourier-matrix Eq. (3). Thus, ΞF and its adjoint
can simply be implemented as a three-dimensional Fast Fourier transform and
its adjoint. Note, that the 2D Fourier transform F is a discretized version of
a continuous Fourier transform, whereas the Fourier-encoding Ξ is discrete by
definition.

For non-Cartesian sampling, Pp projects onto arbitrary positions in k-space.
As in non-Cartesian SENSE, PF can be implemented with a non-uniform
Fourier transform [19]. The term FHΞHPΞF is the main operation which
occurs in each iteration step. As described previously [20], it can be interpreted
as a non-periodic convolution with a point-spread function (PSF) which has
to be evaluated on a region with compact support defined by the field-of-view.
Thus, an efficient implementation is achieved with the fast Fourier transform on
a 2-fold enlarged grid to implement the non-periodic convolution using Toeplitz
embedding. This requires only a minor modification of the Cartesian implemen-
tation which can then be used with data gridded once onto the Cartesian grid
in a preparatory step and with a pre-computed PSF.

Sampling Schemes

All utilized Cartesian sampling patterns possess Lref reference lines in the k-
space center, whereas the periphery is undersampled by a factor R. For each
of the M partition measurements we can use a distinct undersampling pattern.
The CAIPIRINHA technique can improve the image quality for SMS acquisi-
tions by acquiring alternating lines between each partition [14, 21]. Alterna-
tively, in each partition the same samples can be acquired (aligned pattern).
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Figure 1: Flow chart for the calculation of the forward operator F , its derivative
DF and the adjoint of the derivative DFH . ỹ: Encoded k-space data. m:
Magnetization. c: Coil sensitivity. P : Projection onto k-space trajectory. F :
2D Fourier transform. Ξpq: Encoding matrix. ·: Pointwise multiplication. +:
Addition. ∗: Complex conjugation.

In radial measurements k-space samples are acquired along spokes. Let Nsp

be the total number of acquired spokes per partition. Then, the angle between
consecutive spokes of a partition is set to αsp = 2π/Nsp which guarantees uni-
form k-space coverage and prevents strong gradient delay artifacts by opposing
the acquisition direction of adjacent spokes. For each partition the k-space tra-
jectory, i.e. the spoke distribution scheme, can be chosen individually. Figure
2 shows three possible spoke distribution schemes: (1) The aligned scheme ac-
quires the same spokes for each partition. (2) In the linear-turn scheme the
initial spoke pattern is rotated by

αLIN
trn = (p− 1) · π

Nsp ·M
(13)

for partition p = 1, . . . ,M , assuring the acquisition of complementary samples
and uniform spoke distribution (cf. Fig. 2b). (3) Fourier-encoding in SMS MRI
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can also be seen as an additional phase-encoding in kz direction. The acquisition
of many slices is therefore very similar to a stack-of-stars sequence in true 3D
imaging for which Zhou et al. [22] showed that a golden angle-like rotation of
the spoke distribution results in a higher image quality than aligned or linearly
varied distributions. Here the turn angle for partition p is given by

αGA
trn =

(
(p− 1) · π

Nsp
·
√

5− 1

2

)
mod

π

Nsp
. (14)

This scheme provides a more uniform local 3D k-space coverage as can be seen
in Fig. 2c, but the spokes themselves are not as evenly distributed as in the
linear-turn scheme. Turn-based spoke distribution schemes in combination with
Fourier-encoded partition measurements are known to improve image quality
similar to CAIPIRINHA in the Cartesian case [15, 21].

Post-processing

Although the matrix W promotes adequate distribution of image content and
coil sensitivities, the results may still exhibit minor large scale intensity vari-
ations compared to a conventional root-sum-of-squares (RSS) reconstruction.
This can be compensated for by multiplying the image content with the RSS of
the coil profiles:

mfinal
q = mq ·

√√√√ N∑
j=1

|cjq|2 (15)

Methods

Cartesian and radial 2D FLASH sequences with adapted RF excitation pulses
for Fourier-encoded SMS excitation as described in the theory section were de-
veloped and utilized in this study. All experiments were conducted on a Magne-
tom Skyra 3T (Siemens Healthcare GmbH, Erlangen, Germany) scanner using
a 20-channel head/neck coil for phantom and human brain measurements and a
combined thorax and spine coil with 26 channels for human heart measurements.
All phantom measurements (FOV = 170×170 mm2, matrix size 192×192, slice
thickness ∆z = 6 mm) were performed on a custom-made phantom (Fig. 3)
consisting of ABS bricks (LEGO) being immersed in pure water.

It is designed such that the proton density of the top and bottom part
of the phantom differ distinctly from each other. This property can be used
to demonstrate the capability of SMS-NLINV to disentangle simultaneously
excited slices. The in-vivo brain measurements (FOV = 230× 230 mm2, matrix
size 192×192, slice thickness ∆z = 4 mm, flip angle θ = 25◦) as well as the heart
measurements (FOV = 256 × 256 mm2, matrix size 160 × 160, slice thickness
∆z = 6 mm, flip angle θ = 8◦) were performed on volunteers with no known
illnesses. In all experiments, all simultaneously acquired slices are separated by
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Figure 2: Schematic for three radial sampling schemes (multi-band factor M = 4
and Nsp = 3 spokes per partition measurement). Aligned: Same spokes acquired
for each partition. Linear-turn: Linearly varied rotation angle αtrn of the initial
spoke distribution. Golden-angle-turn: Rotation angle αtrn chosen according to
the golden angle. a) Spoke distribution for all 4 partitions. αsp is the angle
between consecutive spokes. The arrow hints the readout direction. b) Spokes
of all partitions plotted in one diagram. c) kz plotted against the rotation angle
αtrn.

a fixed distance d. NLINV as well as SMS-NLINV were implemented in the C-
based software package BART [23]. The initial guess was mq = 1 (q = 1, . . . ,M)
for the magnetizations and cjq = 0 (q = 1, . . . ,M, j = 1, . . . , N) for the coil
sensitivities. The parameters for the Sobolev norm were set to a = 1, b = 220
and l = 32. The initial regularization parameter was β0 = 1 with reduction
factor h = 1/2. In the interest of reproducible research, code and data to
reproduce the experiments are made available on Github.1

To confirm the basic functionality of SMS-NLINV, a Cartesian SMS mea-
surement with multi-band factorM = 2 (slice distance d = 60 mm, TE/TR=4.4/
8.3 ms, flip angle θ = 15◦) was performed on the brick phantom. A full k-space
was acquired and undersampling was performed retrospectively by multiplica-

1https://github.com/mrirecon/sms-nlinv
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Figure 3: Schematic of the custom-made phantom consisting of LEGO bricks
in pure water.

tion with the corresponding patterns. The full and a retrospectively undersam-
pled k-space (CAIPIRINHA pattern, R = 4, Lref = 12) were reconstructed with
SMS-NLINV. For comparison, reconstructions were also performed using the
L2-regularized ESPIRiT algorithm [4], which is based on SENSE [1] and can
therefore also be applied to SMS data [14]. To validate the accuracy of the
results, difference images between the full and undersampled reconstructions
were calculated. To assure proper difference images for ESPIRiT reconstruc-
tions, the complex-valued slice-images were multiplied with the corresponding
coil sensitivities followed by a RSS combination. The post-processing step in
SMS-NLINV already compensates for intensity variations, thus adequate differ-
ence images can be calculated using the magnitude of the resulting images. We
performed the same experiment using Lref = 4 reference lines to demonstrate the
advantage of SMS-NLINV over ESPIRiT given a very small calibration region.

The CAIPIRINHA technique can significantly improve the image quality of
SMS experiments [14, 21]. We confirm these findings for SMS-NLINV by com-
paring retrospectively undersampled SMS measurements (TE/TR=4.8/9.1 ms,
flip angle θ = 15◦, Lref = 12, R = 4) with CAIPIRINHA patterns to SMS
measurements with aligned patterns using the multi-band factors M = 2 (slice
distance d = 60 mm) and M = 3 (slice distance d = 30 mm). The absolute slice
locations were chosen such that the outermost slices in both experiments were
located at the same positions, which allowed a comparison of the respective slice
images. A reference measurement was performed with each investigated slice
acquired separately in a single-slice experiment and reconstructed with regular
NLINV using equivalent reconstruction parameters. Apart from reduced SNR,
the single-slice measurements should be identical to the acquisition with the
aligned patterns.

The same experiment was performed using a radial trajectory to rule out
errors with the radial SMS-FLASH sequence (TE/TR=2.0/3.1 ms, flip angle
θ = 15◦, Nsp = 29 spokes per partition) and the SMS-NLINV reconstruction
for non-Cartesian data. Again, the improved k-space coverage of interleaved
acquisitions, i.e. the use of linear-turn- and golden-angle-turn-based spoke dis-
tributions, should provide better results than aligned distributions or single-
slice measurements with the same reduction factor. As a reference we per-
formed single slice measurements on the same slices using Nsp = 301 spokes
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to achieve Nyquist sampling even in the outer region of k-space. Finally, we
present two in-vivo experiments. First, M = 5 slices (slice distance d = 60 mm,
TE/TR=4.0/9.8 ms, Nsp = 39 spokes per partition) of a human brain were
acquired using the golden-angle-turn scheme. Reconstructions were performed
using SMS-NLINV and L2-ESPIRiT. Calibration using ESPIRiT requires a four
step procedure: (1) the reconstruction of a fully-sampled Cartesian calibration
regions using gridding (for all partitions) (3) disentangling of the partitions
into slices using the inverse of matrix Ξ, (3) Fourier transformation back into a
Cartesian k-space (for each slice), and (4) actual calibration from the Cartesian
k-space data (for each slice). For this procedure to work, only the region in k-
space which fulfills the Nyquist criterion in all partitions can be used. The size
of the calibration region for ESPIRiT Rcal is limited by the Nyquist criterion
and was calculated to be Rcal = 35 × 35. Second, M = 2 slices (slice distance
d = 40 mm, TE/TR=1.37/2.2 ms, Nsp = 35 spokes per partition) of a human
heart were acquired without ECG-triggering [6]. To be able to reconstruct a
single frame without temporal regularization or filtering, we combined 5 inter-
leaves with 7 spokes per partition to obtain a single data set with 35 spokes per
partition and linear-turn scheme.

Results

Cartesian data

Figure 4a shows ESPIRiT and SMS-NLINV reconstructions of a 4-fold un-
dersampled Cartesian SMS measurement with multi-band factor M = 2 and
Lref = 12 reference lines. The SMS-NLINV algorithm can completely disentan-
gle the superposed slices without significant artifacts after it = 9 Newton steps.
The resulting image quality is equivalent to ESPIRiT. Figure 4a also depicts
difference images of undersampled and full reconstructions for both methods.
For better visibility the image intensity was increased by a factor of 5. In all
difference images almost no residual image content can be observed and mostly
noise is present, which means that almost all aliasing artifacts could be elimi-
nated. The enhanced noise in the central region is a consequence of the specific
Cartesian sampling pattern. Figure 4b shows the same reconstructions using
a reduced calibration region. Whereas we find significant aliasing artifacts for
ESPIRiT, SMS-NLINV still provides good results after it = 10 Newton steps.

Figure 5 shows SMS-NLINV reconstructions of Cartesian SMS acquisitions
with multi-band factors M = 2 and M = 3 after it = 10 Newton steps using
aligned and CAIPIRINHA patterns. As a comparison, the figure also depicts
NLINV reconstructions of single-slice measurements for the same slices using
it = 10 Newton steps. For both pattern types and multi-band factors the super-
position can be completely disentangled and no severe undersampling artifacts
are present. However, the image quality resulting from the CAIPIRINHA data
is clearly superior to aligned SMS and single-slice data. Besides an SNR ben-
efit, the images of aligned SMS do not show any advantages compared to the
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Figure 4: a) Reconstructions of a 4-fold undersampled Cartesian SMS measure-
ment with multi-band factor M = 2 (slice distance d = 60 mm, Lref = 12 refer-
ence lines) and corresponding difference images to full reconstructions: ESPIRiT
and SMS-NLINV after it = 9 Newton steps. A magnified region-of-interest in-
dicated by a white rectangle is shown as inset on the bottom right. For better
visibility, the image intensity of the difference images was increased by a factor
of 5. b) Same experiment as in a) using only Lref = 4 reference lines and it = 10
Newton steps for SMS-NLINV. The arrows highlight aliasing artifacts.

single-slice images. By contrast, the CAIPIRINHA images resolve small details
of the phantom bricks much better.

Radial data

Figure 6 depicts SMS-NLINV reconstructions of aligned, linear-turn- and golden-
angle-turn-based radial SMS acquisitions with multi-band factor M = 3 after
it = 10 Newton steps, as well as NLINV reconstructions of single-slice measure-
ments for the same slices using it = 10 Newton steps. The results for M = 2 are
provided as supporting Figure S1. Similar to Fig. 5 the slice images could be
reconstructed without significant undersampling or superposition artifacts. As
in the Cartesian case, the turn-based SMS acquisitions where complementary
k-space data are acquired in each partition yield a much better image qual-
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Figure 5: Comparison of different acquisition and reconstruction strategies for
Cartesian measurements on the brick phantom with reduction factor R = 4 and
Lref = 12 reference lines. a) Single-slice acquisition and NLINV reconstruction
for each slice. b) SMS acquisition and SMS-NLINV reconstruction for M = 2
and aligned (left) and CAIPIRINHA pattern (right). Slice distance d = 60 mm.
c) SMS acquisition and SMS-NLINV reconstruction for M = 3 and aligned
(left) and CAIPIRINHA pattern (right). Only the outermost slices with slice
distance d = 60 mm are depicted. A magnified region-of-interest indicated by a
white rectangle is shown as inset on the bottom right of every image.

ity than aligned SMS and single-slice measurements. The linear-turn and the
golden-angle-turn scheme yield similar results. As supporting Figure S2 we pro-
vide difference images in image and k-space for Nsp = 301 and Nsp = 29 spokes
per partition for the linear-turn-based M = 3 measurement. Supporting Figure
S3 shows the same experiments as Figure 6 and supporting Fig. S1 but with
Nsp = 69 spokes.

Figure 7 and 8 show the results of the in-vivo scans where we have chosen
the number of Newton steps to obtain the best results using visual observation.
Figure 7 shows M = 5 slices of a 7-fold undersampled acquisition of a human
brain reconstructed with SMS-NLINV using it = 11 Newton steps and ESPIRiT.
Both methods show similar results as all slices are completely disentangled and
all streaking artifacts could be eliminated. As supporting Figure S4 shows, the
residual for the SMS-NLINV reconstruction approaches a constant value when
plotted against the number of Newton steps.

Figure 8 depicts M = 2 slices of a human heart in end-diastole simultane-
ously acquired in 154 ms using Nsp = 35 spokes per partition and reconstructed
with SMS-NLINV using it = 13 Newton steps. Again, the two slices are com-
pletely disentangled and only slight blurring as well as minor streaking artifacts
are present.
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Figure 6: Comparison of different acquisition and reconstruction strategies for
radial measurements on the brick phantom with Nsp = 29 spokes per partition
or slice and a fully sampled reference scan with Nsp = 301 spokes per slice.
a) Single-slice acquisition and NLINV reconstruction for each slice. b) SMS
acquisition and SMS-NLINV reconstruction for M = 3 and aligned (left), linear-
turn-based (center) and golden-angle-turn-based sampling (right). Only the
outermost slices with slice distance d = 60 mm are depicted. A magnified region-
of-interest indicated by a white rectangle is shown as inset on the bottom right
of every image. The same experiment for M = 2 is provided as supporting
Figure S1.

Discussion

In this work, SMS-NLINV has been combined with a Cartesian and a radial
SMS-FLASH sequence.

With sufficient reference lines, SMS-NLINV and ESPIRiT reconstruct un-
dersampled SMS data with similar image quality as shown in this work for
radial and Cartesian data. This finding is in agreement with previous results
comparing ESPIRiT and regular NLINV [4]. For very small calibration regions
SMS-NLINV still provides good results where ESPIRiT reconstructions already
show severe artifacts. The reason for this is that SMS-NLINV does not rely on
a fully sampled calibration region but jointly estimates the image content and
the coil sensitivities. In contrast, direct calibration using ESPIRiT or other cali-
bration methods requires a complicated four step procedure and only the region
in k-space which fulfills the Nyquist criterion simultaneously in all partitions
can be utilized for calibration. SMS-NLINV not only makes all these additional
separate processing steps unnecessary, it also works even for very small cali-
bration regions by exploiting all available samples. This latter property makes
SMS-NLINV ideally suited for non-Cartesian sampling, especially for acceler-
ated dynamic imaging with changing coil sensitivities where only 5 to 7 spokes
per partition are acquired and the Nyquist-sampled region can become very
small [24]. We compared Cartesian SMS acquisitions with CAIPIRINHA and
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Figure 7: SMS-NLINV and ESPIRiT reconstructions of a human brain using
a radial SMS-FLASH acquisition with multi-band factor M = 5 (slice distance
d = 10 mm, slice thickness ∆z = 4 mm, golden-angle-turn scheme, Nsp = 39
spokes per partition, it = 11 Newton steps).

aligned patterns as well as radial SMS acquisitions with aligned spoke scheme
and linear-turn spoke schemes for different multi-band factors M with single-
slice (M = 1) measurements as control. The aligned schemes acquire the same
k-space samples for each of the M partitions which resembles an averaging
process and thus yields an SNR benefit relative to single-slice measurements.
However, the partitions do not contain complementary k-space information and
therefore no significant advantages in terms of better resolved details can be
achieved. In this case a joint reconstruction does not possess any benefits
compared to an inverse discrete Fourier transform (Eq. (4)) on the Fourier-
encoded k-spaces followed by single-slice reconstructions. The actual advantage
of SMS-NLINV becomes apparent with the use of schemes where each partition
contributes complementary k-space data which is equivalent to supplementary
object information. Consequently, in addition to the SNR benefit, details are
better resolved. Whereas single-slice NLINV and aligned SMS-NLINV recover
missing k-space samples using 2D sensitivity information, SMS-NLINV using
complementary data also exploits sensitivity variations in the third dimension
which allows for higher acceleration factors [12].

In principle, the more slices M we simultaneously acquire using an inter-
leaved scheme, the better will be the resulting image quality of each slice due to
the
√
M -like SNR benefit and the acquisition of additional complementary sam-

ples. However, for the acquisition of M slices we have to perform M partition
measurements and therefore the measurement time increases with increasing M
until it approaches the time of a 3D measurement. The optimal choice for M de-
pends on various experimental considerations such as overall motion robustness,
magnetization preparation scheme, etc.

A future subject of study will be the use of SMS-NLINV for dynamic imaging
at high temporal resolution, which was already successfully demonstrated for
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Figure 8: SMS-NLINV reconstruction of a human heart in end-diastole using a
real-time SMS-FLASH acquisition with multi-band factor M = 2 (slice distance
d = 40 mm, slice thickness ∆z = 6 mm, Nsp = 35 spokes per partition, it = 13
Newton steps).

single-slice MRI using NLINV [25, 6, 26, 27]. The incorporation of additional
minimization penalties such as temporal regularization and median filtering [25]
known from NLINV and adapted spoke distribution schemes for dynamic SMS
imaging [28] can directly be applied to SMS-NLINV and will further reduce
streaking artifacts as well as blurring and improve the overall image quality.
Preliminary results have been presented by Rosenzweig et al. [24].

In this work, we used a basic SMS-FLASH sequence. However, SMS-NLINV
is a very general reconstruction approach and should be applicable to all se-
quences that can make use of an SMS acquisition, such as diffusion tensor imag-
ing (DTI), functional MRI (fMRI) or T1/T2 quantification. In the future, we also
plan to combine SMS-NLINV with a bSSFP sequence [29] and more advanced
regularization techniques which will improve image quality at high acceleration
[30, 31].

Conclusion

The present work extends the NLINV algorithm to simultaneous multi-slice
MRI. As NLINV does not rely on the presence of Cartesian calibration data,
it is an ideal choice for parallel imaging with non-Cartesian acquisitions. The
combination with simultaneous multi-slice (SMS) offers the advantages of in-
creased SNR and higher acceleration by exploiting three-dimensional sensitivity
encoding.
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Appendix

Glossary

Table 1: Glossary of notations

M Multi-band factor
N Number of receive channels
d Slice distance
xq Magnetization and coil sensitivities for slice q
y k-spaces of all coils
yj k-space of coil j
yq k-space of slice q
m Magnetizations seen by all coils
mj Magnetization seen by coil j
mq Magnetization of slice q
c Coil sensitivities of all coils
cq Coil sensitivity of slice q
ĉ Normalized coil sensitivity
zq Center coordinate of slice q
∆z Slice thickness
˜ Encoded quantity
H Adjoint
T Transpose
∗ Complex conjugate
it Number of Newton steps.

Derivative and adjoint of the Forward operator

Given the forward operator F (x) from Eq. (6) the corresponding derivative reads

DF
∣∣
X

 dx1

...
dxM

 = PΞ

 F(dm1c1 +m1dc1)
...

F(dmMcM +mMdcM )

 . (16)

The adjoint of the derivative is given by

DFH
∣∣
X

 dỹ1

...
dỹM

 =



(
cH1
mH

1

)
0

. . .

0

(
cHM
mH

M

)
FHΞHPH

 dỹ1

...
dỹM

 ,

(17)
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with (
cHq
mH

q

)
:=

(
c1q
∗
, . . . , cNq

∗

m∗q

)
.

The asterisk ∗ denotes pointwise complex conjugation.

Weighting Matrix

The weighting matrix used in SMS-NLINV to implement the smoothness penalty
for the coil sensitivities is given by:

W−1 :=

 W−1 0
. . .

0 W−1

 , (18)

Here, W−1 is the same weighting matrix as used in conventional NLINV:

W−1 :=


I 0

a(1 + b||~k||2)l/2F
. . .

0 a(1 + b||~k||2)l/2F

 . (19)
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Supporting Figure S1: Comparison of different acquisition and reconstruction
strategies for radial measurements on the brick phantom with Nsp = 29 spokes
per partition or slice and a fully sampled reference scan with Nsp = 301 spokes
per slice. a) Single-slice acquisition and NLINV reconstruction for each slice.
b) SMS acquisition and SMS-NLINV reconstruction for M = 2 and aligned
(left), linear-turn-based (center) and golden-angle-turn-based sampling (right).
Slice distance d = 60 mm. A magnified region-of-interest indicated by a white
rectangle is shown as inset on the bottom right of every image.
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Supporting Figure S2: Difference images in image and k-space for SMS (M = 3,
slice distance d = 30 mm, linear-turn-based spoke distribution) acquisitions with
Nsp = 301 (fully sampled reference) and Nsp = 29 spokes per partition. For
better visibility, the intensity of the difference images was increased by a factor
of 5 and the k-spaces were additionally depicted using the log-scale.
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Supporting Figure S3: Comparison of different acquisition and reconstruction
strategies for radial measurements on the brick phantom with Nsp = 69 spokes
per partition or slice and a fully sampled reference scan with Nsp = 301 spokes
per slice. a) Single-slice acquisition and NLINV reconstruction for each slice.
b) SMS acquisition and SMS-NLINV reconstruction for M = 2 and aligned
(left), linear-turn-based (center) and golden-angle-turn-based sampling (right).
Slice distance d = 60 mm. c) SMS acquisition and SMS-NLINV reconstruction
for M = 3 and aligned (left), linear-turn-based (center) and golden-angle-turn-
based sampling (right). Only the outermost slices with slice distance d = 60 mm
are depicted.
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Supporting Figure S4: Supporting Figure S4: Residuum of the SMS-NLINV
reconstruction in Figure 7 against the number of Newton steps.
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